

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No	:	CEMC/ASL/OCT-A/21
Name of Company	:	Ardent Steel Ltd.
Sample Description	:	Ambient Air Monitoring.
Date of Monitoring	:	08.10.2021
Date of Receiving	:	09.10.2021
Date of Analysis	:	09.10.2021
Sample Collected by	:	Mr. B.K.Samantaray.

AMBIENT AIR QUALITY TEST REPORT (24 HOURLY AVERAGE)

$\frac{PM_{10}}{(\mu g/m^3)}$	$PM_{2.5} \ (\mu g/m^3)$	$\frac{SO_2}{(\mu g/m^3)}$	NOx (µg/m ³)	CO (mg/m ³)	NH ₃ (μg/m ³)	$O_3 \ (\mu g/m^3)$	Pb (μg/m ³)	Ni (ng/m ³)	As (ng/m ³)	Benzene (µg/m ³)	BaP (ng/m ³)
65.2	33.8	10.2	14.8	0.42	<20	<10	<0.06	<0.6	<0.44	<1	<1
60.4	30.6	9.6	13.6	0.37	<20	<10	<0.06	<0.6	<0.44	<1	<1
64.6	31.4	10.0	14.2	0.45	<20	<10	<0.06	<0.6	<0.44	<1	<1
62.8	31.8	9.9	13.8	0.39	<20	<10	<0.06	<0.6	<0.44	<1	<1
100	60	80	80	4	400	100	1.0	20	6	5	1
					IS: 5182 (Part- 25,2019)			As per CPCB method followed by AAS	As per CPCB method followed by AAS		IS: 5182 (Part-12)
	(μg/m³) 65.2 60.4 64.6 62.8 100 IS: 5182	(μg/m³) (μg/m³) 65.2 33.8 60.4 30.6 64.6 31.4 62.8 31.8 100 60 IS: 5182 IS: 5182 (Part-	(μg/m³) (μg/m³) (μg/m³) 65.2 33.8 10.2 60.4 30.6 9.6 64.6 31.4 10.0 62.8 31.8 9.9 100 60 80 IS: 5182 IS: 5182 (Part- IS: 5182	(μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) 65.2 33.8 10.2 14.8 60.4 30.6 9.6 13.6 64.6 31.4 10.0 14.2 62.8 31.8 9.9 13.8 100 60 80 80 IS: 5182 IS: 5182 (Part-IS: 5182 IS: 5182 IS: 5182	(μg/m³) <	(μg/m³) (μg/m³)	(µg/m³)(µg/m³)(µg/m³)(µg/m³)(µg/m³)(µg/m³)(µg/m³)(µg/m³) 65.2 33.8 10.2 14.8 0.42 <20 <10 60.4 30.6 9.6 13.6 0.37 <20 <10 64.6 31.4 10.0 14.2 0.45 <20 <10 62.8 31.8 9.9 13.8 0.39 <20 <10 100 60 80 80 4 400 100 $15: 5182$ $IS: 5182$ (Part- (Part 4) $IS: 5182$ (Part 4) $IS: 5182$ (Part 4) $IS: 5182$ (Part 4) $IS: 5182$ (Part 4)	$(\mu g/m^3)$ $(\mu g/m^3$	(μg/m³) (μg/m³)	(µg/m3) (µg/m3)	(µg/m³) (µg/m³)

zed Signatory Notes:

agemen Seal of Laboratory Environmental tanc Laboratory

- > The results relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No
Name of Company
Sample Description
Date of Monitoring
Date of Receiving
Date of Analysis
Sample Collected by

CEMC/ASL/ OCT -F/21 Ardent Steel Ltd. Fugitive Emission 08.10.2021 09.10.2021 09.10.2021 Mr. B.K.Samantaray.

agemen

Seal of Laboratory

FUGITIVE EMISSION TEST REPORT

•

Sl.		RESULT			
No.	LOCATION	RSPM (µg/m ³)	SPM (µg/m ³)		
1	Proportioning System (Ash & Coke Fines Bunker)	331	1106		
2	Raw Material Transfer point of Mixture (Mixture Building)	278	1067		
3	Ball Mill (Cool Grinding)	296	1118		
4	Ball Mill (Flux & Coke Grinding)	255	1061		
5	Finished Product Transfer points and plant de-dusting system	243	1052		
6	Travelling Grate & Rotary Kiln	271	1034		
	MoEF Standard for SPM		2000*		

* The standard is applicable at 10 m distance from the source

END OF REPORT

ed Signatory

- The results relate only to the sample tested.
- This Test Report shall not be reproduced wholk or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No Name of Company Sample Description Date of Monitoring Sample Collected by CEMC/ASL/ OCT -N/21 Ardent Steel Ltd. Noise Monitoring Report 09.10.2021 Mr. B.K.Samantaray.

NOISE LEVEL STUDY REPORT

•

:

:

Sl. No.	Location	Noise Level In Day Time dB(A)	Noise Level In Night Time dB(A)	
01	Ball Mill (Cool Grinding)	70.8	66.2	
02	Raw Material Transfer point of Mixture (Mixture Building)	69.2	64.8	

NATIONAL STANDARD NOISE LEVEL

Area	Category of Area/Zone	Permissible Limit in dB (A)				
Code		Day Time Night Tin				
Α	Industrial Area	75	70			
В	Commercial Area	65	55			
С	Residential Area	55	45			
D	Silence Zone	50	40			

END OF REPORT

ized Signatory Notes:

- > The results relate only to the sample tested.
- This Test Report shall not be reproduced wholly of in pair without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No	:	CEMC/ASL/ OCT -St/21
Name of Company	:	Ardent Steel Ltd.
Sample Description	:	Stack Monitoring
Date of Monitoring	:	08.10.2021
Date of Receiving	:	09.10.2021
Date of Analysis	:	09.10.2021
Sample Collected by	:	Mr. B.K.Samantaray.
Stack Height	:	30m

STACK EMISSION REPORT

SI.	Location of Sampling	Flue Gas	Concentration of Particulate Matter (PM) in mg/Nm ³
No.		Temp. in K	Result
01	ESP	394	36.2

END OF REPORT

uthorized Signatory

Notes:

agemen Seal of Laborat Laboratory * Centro

- The results relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No	:	CEMC/ASL/ OCT -DW/21
Name of Company	:	Ardent Steel Ltd.
Sample Description	:	Drinking Water
Date of Monitoring	:	08.10.2021
Date of Receiving	:	09.10.2021
Date of Analysis	:	09.10.2021
Sample Collected by	:	Mr. B.K.Samantaray.
Sample Location	:	Canteen (RO Water)

	GROUND WATER TEST REFORT								
Sl. No	Parameter	Unit	Desired Limit of drinking water (BIS:10500:2012)	Permissible Limit of drinking water (BIS:10500:2012)	Result				
1	Colour	Hazen	5	15	<5				
2	Odour	-	Agreeable	Agreeable	AL				
3	Taste	-	Agreeable	-	AL				
4	Turbidity	NTU	1	5	<1				
5	pH Value @ 25°C	-	6.5-8.5	No Relaxation	6.46				
6	Total Dissolved Solid	mg/l	500	2000	60				
7	Alkalinity as CaCO ₃	mg/l	200	600	34				
8	Total Hardness as CaCO ₃	mg/l	200	600	26				
9	Iron as Fe	mg/l	0.3	No Relaxation	0.07				
10	Nitrate as NO ₃ ⁻ -N	mg/l	45	No Relaxation	0.25				
11	Sulphate as SO ₄	mg/l	200	400	2.2				
12	Fluoride as F	mg/l	1.0	1.5	< 0.05				
13	Calcium as Ca	mg/l	75	200	6.41				
14	Chloride as Cl	mg/l	250	1000	5.9				

GROUND WATER TEST REPORT

N.B: AL – Agreeable

Authorized Signatory Notes:

- > The result relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

> Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101, E-mail: <u>cemclab@yahoo.in</u>

END OF REPORT

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

CENTRE FOR ENVOTECH AND MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

:

•

:

:

:

Reference No
Name of Company
Sample Description
Date of Monitoring
Date of Receiving
Date of Analysis
Sample Collected by
Sample Location

CEMC/ASL/ OCT -GW/21

Ardent Steel Ltd. Ground Water 08.10.2021 09.10.2021 09.10.2021 Mr. B.K.Samantaray. BoreWell

GROUND WATER TEST REPORT

Slr.						IS105	00:2012
No.	Parameters	Unit	BW1	BW2	BW3	Acceptable Limit	Permissible Limit
1	Colour	Hazen	<05	<05	<05	5	15
2	Odour		AL	AL	AL	AL	AL
3	Taste		AL	AL	AL	AL	AL
4	Turbidity	NTU	<1.0	<1.0	<1.0	1	5
5	pH Value @ 25°C	mg/l	7.42	7.48	7.33	6.5-8.5	No Relaxation
6	Total Hardness (as CaCO ₃)	mg/l	144	152	148	200	600
7	Iron (as Fe)	mg/l	0.23	0.21	0.22	0.3	No Relaxation
8	Chloride (as Cl)	mg/l	33	37	35	250	1000
9	Residual, free Chlorine	mg/l	ND	ND	ND	0.2	1.0
10	Total Dissolved Solids	mg/l	198	216	204	500	2000
11	Calcium (as Ca)	mg/l	39.27	42.00	41.2	75	200
12	Magnesium (as Mg)	mg/l	11.18	11.47	10.98	30	100
13	Copper (as Cu)	mg/l	< 0.03	< 0.03	< 0.03	0.05	1.5
14	Manganese (as Mn)	mg/l	< 0.05	< 0.05	< 0.05	0.1	0.3
15	Sulphate (as SO ₄)	mg/l	13.5	14.4	14.06	200	400
16	Nitrate (as NO ₃)	mg/l	3.9	4.7	4.6	45	No Relaxation
17	Fluoride (as F)	mg/l	0.15	0.17	0.16	1.0	1.5
18	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	<0.001	<0.001	0.001	0.002
19	Mercury (as Hg)	mg/l	< 0.001	< 0.001	< 0.001	0.001	No Relaxation
20	Cadmium (as Cd)	mg/l	<0.003	<0.003	< 0.003	0.003	No Relaxation
21	Selenium (as Se)	mg/l	< 0.001	< 0.001	< 0.001	0.01	No Relaxation
22	Arsenic (as As)	mg/l	< 0.001	< 0.001	< 0.001	0.01	0.05
23	Cyanide (as CN)	mg/l	ND	ND	ND	0.05	No Relaxation

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

CENTRE FOR ENVOTECH AND MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

24	Lead (as Pb)	mg/l	< 0.01	< 0.01	< 0.01	0.01	No Relaxation
25	Zinc (as Zn)	mg/l	< 0.05	< 0.05	< 0.05	5	15
26	Chromium (as Cr)	mg/l	< 0.05	< 0.05	< 0.05	0.05	No Relaxation
27	Mineral Oil	mg/l	< 0.05	< 0.05	< 0.05	0.5	No Relaxation
28	Total Alkalinity (as CaCO ₃)	mg/l	144	142	140	200	600
29	Aluminium (as Al)	mg/l	< 0.01	< 0.01	< 0.01	0.03	0.2
30	Boron (as B)		< 0.2	< 0.2	< 0.2	0.5	1.0
31	Total Coliform	MPN/100ml	Absent	Absent	Absent	Absent in 100 mL Sample	Absent
32	Faecal Coliform		Absent	Absent	Absent	Absent in 100 mL Sample	Absent
N.B: AL – Agreeable							

END OF REPORT

Authorized Signatory Notes:

- The result relate only to the sample tested.
 This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No
Name of Company
Date of Monitoring
Date of Receiving
Date of Analysis
Sample Collected by
Sample Location

CEMC/ASL/ OCT -SW/21 Ardent Steel Ltd. 08.10.2021 09.10.2021 09.10.2021 Mr. B.K.Samantaray. Reservoir (settling pond)

SURFACE WATER TEST REPORT

•

Sl. No	Parameter	Unit	GSR 422E Standards	Result
1	Colour	Hazen		10
2	Odour	-		U/O
3	pH Value @ 25°C	-	5.5-9.0	7.58
4	Total Dissolved Solid	mg/l	2100	334
5	Iron as Fe	mg/l	3.0	0.31
6	Sulphate as SO ₄	mg/l	1000	14.8
7	Nitrate as NO ₃ ⁻ -N	mg/l	9.6	12.2
8	Boron as B	mg/l	2.5	< 0.2
9	BOD for 3 days @ 27 ⁰ C	mg/l	3	2.4
10	COD	mg/l	250	20

N.B: U/O- Un-objectionable

Authorized Signatory Notes:

- > The result relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

> Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101, E-mail: <u>cemclab@yahoo.in</u>

END OF REPORT

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No	:	CEMC/ASL/ OCT -WW/21
Name of Company	:	Ardent Steel Ltd.
Sample Description	:	Waste Water
Date of Monitoring	:	08.10.2021
Date of Receiving	:	09.10.2021
Date of Analysis	:	09.10.2021
Sample Collected by	:	Mr. B.K.Samantaray
Sample Location	:	STP

ANALYSIS RESULT

Sl. No.	Parameter	Unit	Effluent Discharge Standard	Testing Method	Inlet	Outlet
1.	pH Value @ 25°C		6.5-9.0	APHA 4500 H^+ B	7.76	7.81
2.	Total Suspended Solids	mg/l	<20	APHA 2540 D	34.8	10.2
3.	B.O.D for 3 days @ 27°C	mg/l	<10	APHA 5210 B	80	9.4
4.	COD	mg/l	<50	APHA 5220 C	190	25
5.	Oil & Grease	mg/l		APHA 5520 B	5.1	ND

N.B:-ND-Not Detectable

END OF REPORT

Authonized ignatory Notes:

Seal of Laboratory

agement

- The result relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP),Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in Construction Industry Development Council (CIDC) established by the Planning Commission (Govt. of India) MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.NABL Accredited Laboratory

Reference No	:	CEMC/ASL/ OCT -WT/21
Name of Company	:	Ardent Steel Ltd.
Sample Description	:	Waste material
Date of Monitoring	:	08.10.2021
Date of Receiving	:	09.10.2021
Date of Analysis	:	09.10.2021
Sample Collected by	:	Mr. B.K.Samantaray
Sampling material	:	Used Oil

ANALYSIS RESULT

Sl. No	Parameter	Unit of measurement	As per HWMR-2016 Schedule-V,Part-A,Max	Used Oil
1	Polychlorinated biphenyls (PCBs)	ppm	<2	ND
2	Cadmium+Chromium+Nickel (as Cd+Cr+Ni)	ppm	500	1.48
3	Lead (as Pb)	ppm	100	0.13
4	Polyaromatic Hydrocarbon	%	6	ND
5	Arsenic (as As)	ppm	5.0	< 0.001

*ND-Not Detected, ppm-parts per million *The test parameter is within the standard limit

Mout

Authorized Signatory Notes:

- > The results relate only to the sample tested.
- This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.
- The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey.

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in.

> Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101, E-mail: <u>cemclab@yahoo.in</u>

END OF REPORT

